TBX5 drives Scn5a expression to regulate cardiac conduction system function.

نویسندگان

  • David E Arnolds
  • Fang Liu
  • John P Fahrenbach
  • Gene H Kim
  • Kurt J Schillinger
  • Scott Smemo
  • Elizabeth M McNally
  • Marcelo A Nobrega
  • Vickas V Patel
  • Ivan P Moskowitz
چکیده

Cardiac conduction system (CCS) disease, which results in disrupted conduction and impaired cardiac rhythm, is common with significant morbidity and mortality. Current treatment options are limited, and rational efforts to develop cell-based and regenerative therapies require knowledge of the molecular networks that establish and maintain CCS function. Recent genome-wide association studies (GWAS) have identified numerous loci associated with adult human CCS function, including TBX5 and SCN5A. We hypothesized that TBX5, a critical developmental transcription factor, regulates transcriptional networks required for mature CCS function. We found that deletion of Tbx5 from the mature murine ventricular conduction system (VCS), including the AV bundle and bundle branches, resulted in severe VCS functional consequences, including loss of fast conduction, arrhythmias, and sudden death. Ventricular contractile function and the VCS fate map remained unchanged in VCS-specific Tbx5 knockouts. However, key mediators of fast conduction, including Nav1.5, which is encoded by Scn5a, and connexin 40 (Cx40), demonstrated Tbx5-dependent expression in the VCS. We identified a TBX5-responsive enhancer downstream of Scn5a sufficient to drive VCS expression in vivo, dependent on canonical T-box binding sites. Our results establish a direct molecular link between Tbx5 and Scn5a and elucidate a hierarchy between human GWAS loci that affects function of the mature VCS, establishing a paradigm for understanding the molecular pathology of CCS disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer.

The contraction pattern of the heart relies on the activation and conduction of the electrical impulse. Perturbations of cardiac conduction have been associated with congenital and acquired arrhythmias as well as cardiac arrest. The pattern of conduction depends on the regulation of heterogeneous gene expression by key transcription factors and transcriptional enhancers. Here, we assessed the g...

متن کامل

A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development

The cardiac conduction system is an anatomically discrete segment of specialized myocardium that initiates and propagates electrical impulses to coordinate myocardial contraction. To define the molecular composition of the mouse ventricular conduction system we used microdissection and transcriptional profiling by serial analysis of gene expression (SAGE). Conduction-system-specific expression ...

متن کامل

Nav-igating through a complex landscape: SCN10A and cardiac conduction.

Genome-wide association studies (GWAS) have implicated SCN10A, which encodes a nociceptor-associated voltage-gated sodium channel subunit, as a modulator of cardiac conduction; however, this role has traditionally been ascribed to SCN5A, which is highly expressed in cardiac muscle. SCN10A is believed to affect cardiac conduction either directly through cardiomyocytes or indirectly via intracard...

متن کامل

The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system.

We report a critical role for the T-box transcription factor Tbx5 in development and maturation of the cardiac conduction system. We find that Tbx5 is expressed throughout the central conduction system, including the atrioventricular bundle and bundle branch conduction system. Tbx5 haploinsufficiency in mice (Tbx5(del/+)), a model of human Holt-Oram syndrome, caused distinct morphological and f...

متن کامل

Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/− Mouse Model

BACKGROUND Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 122 7  شماره 

صفحات  -

تاریخ انتشار 2012